Introduction: Web Services Are Changing

- Service complexity is increasing
 - from static doc-based resources to complex applications
 - commercial use: from low-cost advertising to critical applications
 - commercial applications demand high QoS
- Common set of application requirements is emerging
 - persistence, concurrency control, fault-tolerance, etc.
 - support for dynamic content
 - responses to client-driven applications
 - system-driven customisations
 - increased use of Web application toolkits
- Manageability is increasing in importance
Management Issues

- Site management
 - supporting increased numbers of users
 - painless addition and removal of services
 - supporting increasingly computationally intensive services
 - providing high QoS
 - scalability

- Service management
 - supporting look and feel changes consistently
 - supporting change to presentation logic driving dynamic content
 - supporting change while maintaining consistency

W3Objects Overview

- Framework to aid in the construction of Web-based applications
 - key goal is to provide an extensible Web architecture
- W3Objects are encapsulated entities
 - interface inheritance provides polymorphism
 - code reuse achieved using behavioural inheritance
- W3Objects are organised and named within contexts
- Referencing mechanisms ensure referential integrity and migration transparency (See WWW5 paper)
- Inter-object communication via remote procedure call (RPC)
W3Objects Site Architecture

Web browser → HTTP → 'extensible' Web server → RPC → W3Objects gateway module → W3Objects

Web Access to W3Objects

HTTP Request
GET w3o/banking/balance?acc=1234
HTTP/1.0

HTTP Response
HTTP 200 OK
<headers>
<body>

Web server → RPC → Nameserver → balance

Nameserver → RPC → W3OServer

W3OServers
W3Objects (services)
Site Management Features

- Scalability through transparent distribution
 - arbitrary allocation of services to machines, transparent to users
- Transparent service migration
 - services may be migrated between processes and hosts
 - referential integrity ensured
- Introduction and removal of services
 - new services added by registering them in the nameserver
- Support for stateful services
 - W3Objects persist across requests
 - session-state can be held in memory or optionally on disc
 - persistence support provided
- Management operations accessible via API or Web interfaces

Comparison with Alternative Techniques

- Common Gateway Interface
 - highly inefficient
 - centralised services
 - poor support for session-based services
- Server APIs
 - performance benefits over CGI
 - poor isolation of faults
 - centralised services
 - poor support for session-based services
Service Management Introduction

• Components of a service
 – clients see a service as a collection of pages
 – some may be held as static components
 – some may be generated dynamically
 • results of a user-initiated computation
 • customised presentation
 – services consists of functional and presentation components
 – services may contain replicated presentation components
 – services may share presentation components

• Management operations
 – changes to static components, e.g., look and feel changes
 – changes to presentation logic
 – addition of new operation interfaces

Manageable W3Object Services

• Strong separation of presentation logic from functional aspects
• A service is logically represented as a single object
• Internally a service object contains view objects
 – a view either represent a complete page or a page component
 – views are either static or dynamic; private or shared
• Presented pages are created by assembling view objects
• Manageability is obtained through inheritance
 – develop application without consideration for Web presentation
 – develop Web interface using view components
 – dynamic views glue the Web interface to the functional interface
Service Management Features

- Web interface can be configured at run-time without outages
- Isolation of commonality
 - shared views are updated once; changes automatically propagated
- Encapsulation
 - entire service can be managed as a single object
- Service evolution
 - views can be created, modified and removed
 - views can be migrated, e.g., created privately then shared
- Accessible management interface
 - all management operations can be accessed via Web interfaces
Manageable Object Internals

Simple Static Views
Scripted Views

- Implemented using W3OScript
 - server-side scripting language based on tcl
 - safe tcl interpreter augmented with W3Object-specific commands
 - implemented using Embedded Tk (ET)
- Can be used to define presentation logic
 - tailored presentations
- Provides glue between Web interface and functional interface
 - user classes can define new W3OScript operations
- W3OScript resources can be configured using Web interfaces

Example: Supporting Metadata

- Resource metadata
 - necessary for improved searching and indexing
 - introduction can be time-consuming and error-prone
 - lots of replicated information
 - updates are a headache
 - standards are not yet well defined
- W3Object support
 - specialised view object
 - provides convenient interface entry interface
 - common components can be shared
 - data held in structured fashion
 - W3OScript defines presentation
Example: Supporting Metadata

Alternative Approaches

• Style sheets can provide consistent look and feel
 – use is encouraged
 – does not help maintaining consistency of replicated data

• Server-side includes (SSI)
 – server-parsed HTML templates may include CGI calls
 – improves flexibility
 – poor performance

• W3Objects
 – pre-parsing where possible to improve performance
 – overheads of RPC can be alleviated with caching
Summary

- Manageability is increasing in importance
- Distributed object technology provides a scaleable platform for Web service provision
- Smart referencing mechanisms support migration transparency
- Separation of presentation and functional logic improves service manageability
- Isolating commonality simplifies management
- Scripted resources simplify presentation logic management
- Web-based interfaces improve management accessibility

W3Objects

http://arjuna.ncl.ac.uk/w3objects/

David Ingham
Research Associate, Arjuna Project
Department of Computing Science, Newcastle University, U.K.

Email: dave.ingham@ncl.ac.uk
URL: http://www.cs.ncl.ac.uk/~dave.ingham/

This work has been partially funded by: